Hartigan’s method for k-MLE : Mixture modeling with Wishart distributions and its application to motion retrieval

نویسندگان

  • Christophe Saint-Jean
  • Frank Nielsen
چکیده

We describe a novel algorithm called k-Maximum Likelihood Estimator (k-MLE) for learning finite statistical mixtures of exponential families relying on Hartigan’s k-means swap clustering method. To illustrate this versatile Hartigan k-MLE technique, we consider the exponential family of Wishart distributions and show how to learn their mixtures. First, given a set of symmetric positive definite observation matrices, we provide an iterative algorithm to estimate the parameters of the underlying Wishart distribution which is guaranteed to converge to the MLE. Second, two initialization methods for k-MLE are proposed and compared. Finally, we propose to use the Cauchy-Schwartz statistical divergence as a dissimilarity measure between two Wishart mixture models and sketch a general methodology for building a motion retrieval system.

منابع مشابه

A New Implementation of k-MLE for Mixture Modeling of Wishart Distributions

We describe an original implementation of k-Maximum Likelihood Estimator (k-MLE)[1], a fast algorithm for learning finite statistical mixtures of exponential families. Our version converges to a local maximum of the complete likelihood while guaranteeing not to have empty clusters. To initialize k-MLE, we propose a careful and greedy strategy inspired by k-means++ which selects automatically cl...

متن کامل

Online k-MLE for Mixture Modeling with Exponential Families

This paper address the problem of online learning finite statistical mixtures of exponential families. A short review of the Expectation-Maximization (EM) algorithm and its online extensions is done. From these extensions and the description of the k-Maximum Likelihood Estimator (k-MLE), three online extensions are proposed for this latter. To illustrate them, we consider the case of mixtures o...

متن کامل

The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models

In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...

متن کامل

Fast Learning of Gamma Mixture Models with k-MLE

We introduce a novel algorithm to learn mixtures of Gamma distributions. This is an extension of the k-Maximum Likelihood estimator algorithm for mixtures of exponential families. Although Gamma distributions are exponential families, we cannot rely directly on the exponential families tools due to the lack of closed-form formula and the cost of numerical approximation: our method uses Gamma di...

متن کامل

Numerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model

Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014